

ROOT Status

BNL April 2000

René Brun/CERN

Project history

- Jan 95: Thinking/writing/rewriting/???
- April 95: proposal to NA49
- November 95: Public seminar, show Root 0.5
- Spring 96: adopt CINT
- Jan 97: Root version 1.0
- Jan 98: Root version 2.0
- Mar 99: Root version 2.21/08 (FNAL workshop)
- Feb 00: Root version 2.23/12 (CERN workshop)
- Developing version 2.24 (today 2.24/02)

Root Maturity graph

Root abstract interfaces

- Following many comments received on modularity, Root version 2.23 includes a new set of abstract interfaces and a reorganisation of the libraries structure. This has been possible without breaking too much backward compatibility.
- The abstract interfaces have two functions:
 - Possibility for a user to redefine or extend a given implementation.
 - Minimize dependencies between classes and shared libraries.

Root Abstract Interfaces

Lib reorganisation

- A major change (mainly internal) in version 2.23
- Work to minimize libraries/classes dependency
- The two are important
- A lot of coupling because of dictionaries
- Classes may be independent, but if they are in the same dictionary, you get an indirect coupling
- Importance of <u>abstract interfaces</u>.

Root Libs structure

- Root libs are a layered structure
- the CORE classes always required (support for RTTI, basic I/O and interpreter.
- The application libraries. You load only what you use. Separation between Data Objects and the high level classes acting on these objects. Example, a batch job uses only the Hist lib, no need to link HistPainter.

New graphics classes

- TGraphAssymErrors
- TLatex
- Axis titles, PaveLabels, PaveText use TLatex
- TLegend, TLegendEntry
- TCurlyArc, TCurlyLine (Otto Schaile)
- TAxis3D (Valery Fine)

Born equation

$$\frac{2s}{\pi\alpha^2} \frac{d\sigma}{d\cos\theta} (e^+e^- \to f\bar{f}) = \left| \frac{1}{1 - \Delta\alpha} \right|^2 (1 + \cos^2\theta)$$

+ 4 Re
$$\left\{ \frac{2}{1-\Delta\alpha} \chi(s) \left[\widehat{g}_{\nu}^{e} \widehat{g}_{\nu}^{f} (1+\cos^{2}\theta) + 2 \widehat{g}_{a}^{e} \widehat{g}_{a}^{f} \cos\theta \right] \right\}$$

+ 16
$$|\chi(s)|^2 \left[(\widehat{g}_a^{e^2} + \widehat{g}_v^{e^2}) (\widehat{g}_a^{f^2} + \widehat{g}_v^{f^2}) (1 + \cos^2\theta) + 8 \widehat{g}_a^e \widehat{g}_a^f \widehat{g}_v^e \widehat{g}_v^f \cos\theta \right]$$

TLate x

TCurlyArc TCurlyLine TWavyLine

TStyle

- New styles Bold and Video added to Plain
 & Default
- New attributes
- New color palette

Basic widgets

GUI User example

Graphical user Interface

TExec class

- TPad::AutoExec
 - Root > TCanvas c1("c1");
 - Root > c1.AddExec("ex1",".x exec1.C");
- TExec::Draw
 - Root > TExec exec("ex2","DoSomething();")
 - Root > exec.Draw()
- TH1::GetListOfFunctions()->Add(exec)
 - Nice to add graphics primitives depending on the histogram bin contents.

Development version 2.24

- 2.23/12 is frozen since February
 - Stable. No major problems found so far
- First dev version introduced this week
 - New TH2, TH3 inheritance from TH1
 - Secure rootd daemon
 - Extensions in the script compiler
 - More powerful rootcint
 - Byte-swapping optimisation on Linux
 - TMath: new Bessel functions
 - TSpline classes (cubic, quintic)

Script Compiler

Extensions to TSystem such that the following will nicely work:

```
root> .L stress.cxx
root> .L stress.cxx
root> stress();  // will interpret a new version
root> .L stress.cxx++
root> stress();  // will execute compiled code
root> .L stress.cxx++  // not recompiled if stress.cxx is not newer.
root> stress();  // will execute new compiled code
```


Secure rootd deamon

Rootd now supports secure authentication by using the SRP package from Stanford (http://srp.stanford.edu/srp/).

SRP, Secure Remote Passwords, uses a so called "asymmetric key exchange protocol" in which no passwords are ever send over the wire.

read about the main features of SRP look at: http://jafar.stanford.edu/srp/advantages.html

Now when creating a TNetFile object via TFile::Open("root://....") libSRPAuth.so will be loaded if it exits and the secure login protocol will be used. Note that other rootd trafic is not encrypted.

Improved byte-swapping on Linux

Changes in include Bytes.h to support an optimized byte swapping code on Linux machines (thanks to Sasha Vanyashin).

The Bytes.h uses asm macros from the #include <byteswap.h>
This is a part of the GNU C library: /usr/include/byteswap.h
and /usr/include/bits/byteswap.h.

Because the byteswap.h is missing on many Linux systems, a copy of this include is provided in Byteswap.h

Problems

- Windows/NT support in general
- support for old TGWin32 classes becoming a problem
- need full implementation of TVirtualX
- FNAL work with Java could be a solution
- Documentation in a poor status
- Need more Howtos, examples
- Good start with FNAL tutorials

Our intention to upgrade the documentation for the CERN School of Computing in Grece in September

JAVA and ROOT

- step1: Transparent access to C++/Root services via web applets or JRE. (In development with FNAL)
- step2: Exchange of objects (data objects only) between C++, Java. Easy to do via the CINT RTTI. Could be very quickly implemented.
- ◆ Step3: Full Java integration. Implement C++ methods on the Java classes where it makes sense

ROOT users

	$N^{}$					
	1				277.40	2
	ATLAS	79	KLOE	9	NA48	3
į	ALICE	55	ZEUS	9	CLEO	3
1	PHENIX	49	AMS	8	NA50	3
1	STAR	47	OPAL	8	SNO	3
!	CDF	46	AUGER	7	FINUDA	2
	CMS	40	MINOS	7	DIRAC	2
	BABAR	38	AMANDA	6	ATIC	2
	JLAB	38	BRAHMS	6	BLAST	2
	D0	28	GLAST	6	COSMOS	2
	NA49	28	NOMAD	6	NA44	2
	н1	24	LIGO	5	NA45	2
	HERA-B	24	ALEPH	5	TAPS	2
	LHCB	20	HERMES	5	WASA	2
	L3	19	INTEGRAL	5	ACCESS	1
	PHOBOS	18	ANTARES	4	ASTER	1
	HADES	17	BES	4	BAIKAL	1
	DELPHI	15	CELESTE	4	CHIMERA	1
	WA98	13	CHORUS	4	CHOOZ	1
	BELLE	11	SLD	4	HEGRA	1
	COMPASS	11	VIRGO	4	ICARUS	1
					JLC	1
`					NA47	1
	***********				NSLS	1
		• =				

ROOT HEP Users in roottalk

hep 917
scientific 264
commercial 129
private 67
all 1377
experiments 63

